Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.472
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 858-866, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646774

RESUMO

Insect visual electrophysiological techniques are important to study the electrical characteristics of photoreceptor cells and visual neurons in insects, including electroretinography (ERG) and microelectrode intracellular recording (MIR). ERG records the changes of voltage or electric current in the retina of insects in response to different light stimuli, which occurs outside the cell. MIR records the changes in individual photoreceptor cells or visual neurons of an insect exposed to different lights, which occurs inside the cell. Insect visual electrophysiological techniques can explore the mechanism of electrophysiological response of insects' vision to light and reveal their sensitive light spectra and photoreceptor types. This review introduced the basic structure and the principle of ERG and MIR, and summarized their applications in insect researches in the past 20 years, which would provide references for elucidating the mechanism of light perception in insects and the use of insect phototropism to control pests.


Assuntos
Eletrorretinografia , Insetos , Células Fotorreceptoras de Invertebrados , Animais , Insetos/fisiologia , Eletrorretinografia/métodos , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Microeletrodos , Fenômenos Eletrofisiológicos , Eletrofisiologia/métodos
2.
Bioessays ; 46(5): e2300240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593308

RESUMO

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Assuntos
Evolução Biológica , Insetos , Visão Ocular , Animais , Visão Ocular/fisiologia , Insetos/fisiologia , Insetos/genética , Olho/anatomia & histologia , Olho Composto de Artrópodes/fisiologia , Olho Composto de Artrópodes/anatomia & histologia
3.
Nature ; 624(7991): 415-424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092908

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Assuntos
Evolução Biológica , Neurônios , Retina , Vertebrados , Visão Ocular , Animais , Humanos , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/classificação , Análise da Expressão Gênica de Célula Única , Vertebrados/fisiologia , Visão Ocular/fisiologia , Especificidade da Espécie , Células Amácrinas/classificação , Células Fotorreceptoras/classificação , Células Ependimogliais/classificação , Células Bipolares da Retina/classificação , Percepção Visual
4.
Nature ; 615(7954): 939-944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949205

RESUMO

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Assuntos
Rodopsina , Visão Ocular , Animais , Sítios de Ligação/efeitos da radiação , Cristalografia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Isomerismo , Fótons , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Retinaldeído/química , Retinaldeído/metabolismo , Retinaldeído/efeitos da radiação , Rodopsina/química , Rodopsina/metabolismo , Rodopsina/efeitos da radiação , Fatores de Tempo , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação
5.
J Insect Physiol ; 143: 104451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374736

RESUMO

Bees outperform pilots in navigational tasks, despite having 100,000 times fewer neurons. It is commonly accepted in the literature that optic flow is a key parameter used by flying insects to control their altitude. The ambition of the present work was to design an innovative experimental setup that would make it possible to determine whether bees could rely simultaneously on several optical invariants, as pilots do. We designed a flight tunnel to enable manipulation of an optical invariant, the Splay Angle Rate of Change (SARC) and the restriction of the Optical Speed Rate of Change (OSRC) in the optic flow. It allows us to determine if bees use the SARC to control their altitude and to identify the integration process combining these two optical invariants. Access to the OSRC can be restricted by using different textures. The SARC can be biased thanks to motorized rods. This device allows to record bees' trajectories in different visual configurations, including impoverished conditions and conditions containing contradictory information. The comparative analysis of the recorded trajectories provides first time evidence of SARC use in a ground-following task by a non-human animal. This new tunnel allows a precise experimental control of the visual environment in ecological experimental conditions. Therefore, it could pave the way for a new type of ecologically based studies examining the simultaneous use of several information sources for navigation by flying insects.


Assuntos
Altitude , Abelhas , Voo Animal , Navegação Espacial , Animais , Abelhas/fisiologia , Voo Animal/fisiologia , Visão Ocular/fisiologia , Navegação Espacial/fisiologia
6.
Nature ; 612(7938): 116-122, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36289333

RESUMO

Most animals have compound eyes, with tens to thousands of lenses attached rigidly to the exoskeleton. A natural assumption is that all of these species must resort to moving either their head or their body to actively change their visual input. However, classic anatomy has revealed that flies have muscles poised to move their retinas under the stable lenses of each compound eye1-3. Here we show that Drosophila use their retinal muscles to smoothly track visual motion, which helps to stabilize the retinal image, and also to perform small saccades when viewing a stationary scene. We show that when the retina moves, visual receptive fields shift accordingly, and that even the smallest retinal saccades activate visual neurons. Using a head-fixed behavioural paradigm, we find that Drosophila perform binocular, vergence movements of their retinas-which could enhance depth perception-when crossing gaps, and impairing the physiology of retinal motor neurons alters gap-crossing trajectories during free behaviour. That flies evolved an ability to actuate their retinas suggests that moving the eye independently of the head is broadly paramount for animals. The similarities of smooth and saccadic movements of the Drosophila retina and the vertebrate eye highlight a notable example of convergent evolution.


Assuntos
Drosophila , Movimentos Oculares , Músculos , Retina , Visão Ocular , Animais , Drosophila/fisiologia , Movimentos Oculares/fisiologia , Músculos/fisiologia , Retina/fisiologia , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia , Visão Binocular , Percepção de Profundidade , Neurônios Motores , Cabeça/fisiologia , Drosophila melanogaster/fisiologia , Evolução Biológica
7.
Nature ; 610(7930): 128-134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171291

RESUMO

To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.


Assuntos
Cor , Pupila , Reflexo Pupilar , Visão Ocular , Córtex Visual , Animais , Escuridão , Aprendizado Profundo , Camundongos , Estimulação Luminosa , Pupila/fisiologia , Pupila/efeitos da radiação , Reflexo Pupilar/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Fatores de Tempo , Raios Ultravioleta , Visão Ocular/fisiologia , Córtex Visual/fisiologia
8.
Science ; 377(6608): 845-850, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981041

RESUMO

Whereas sensory perception relies on specialized sensory pathways, it is unclear whether these pathways originate as modality-specific circuits. We demonstrated that somatosensory and visual circuits are not by default segregated but require the earliest retinal activity to do so. In the embryo, somatosensory and visual circuits are intermingled in the superior colliculus, leading to cortical multimodal responses to whisker pad stimulation. At birth, these circuits segregate, and responses switch to unimodal. Blocking stage I retinal waves prolongs the multimodal configuration into postnatal life, with the superior colliculus retaining a mixed somato-visual molecular identity and defects arising in the spatial organization of the visual system. Hence, the superior colliculus mediates the timely segregation of sensory modalities in an input-dependent manner, channeling specific sensory cues to their appropriate sensory pathway.


Assuntos
Vias Aferentes , Colículos Superiores , Visão Ocular , Animais , Sinais (Psicologia) , Camundongos , Colículos Superiores/fisiologia , Vibrissas , Visão Ocular/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
10.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727138

RESUMO

Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.


Assuntos
Proteínas do Olho , Visão Ocular , Animais , Cegueira/genética , Cegueira/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Genoma , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos/genética , Camundongos/metabolismo , Retina/metabolismo , Transtornos da Visão/genética , Transtornos da Visão/metabolismo , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Nat Commun ; 13(1): 661, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115511

RESUMO

Hue and luminance contrast are basic visual features. Here we use multivariate analyses of magnetoencephalography data to investigate the timing of the neural computations that extract them, and whether they depend on common neural circuits. We show that hue and luminance-contrast polarity can be decoded from MEG data and, with lower accuracy, both features can be decoded across changes in the other feature. These results are consistent with the existence of both common and separable neural mechanisms. The decoding time course is earlier and more temporally precise for luminance polarity than hue, a result that does not depend on task, suggesting that luminance contrast is an updating signal that separates visual events. Meanwhile, cross-temporal generalization is slightly greater for representations of hue compared to luminance polarity, providing a neural correlate of the preeminence of hue in perceptual grouping and memory. Finally, decoding of luminance polarity varies depending on the hues used to obtain training and testing data. The pattern of results is consistent with observations that luminance contrast is mediated by both L-M and S cone sub-cortical mechanisms.


Assuntos
Percepção de Cores/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Cor , Sensibilidades de Contraste/fisiologia , Movimentos Oculares/fisiologia , Visão Ocular/fisiologia , Adulto , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Estimulação Luminosa/métodos , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem
12.
Commun Biol ; 5(1): 108, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115680

RESUMO

Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.


Assuntos
Visão Ocular/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico , Callithrix , Movimentos Sacádicos/fisiologia
13.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169072

RESUMO

Humans make sense of the world by organizing things into categories. When and how does this process begin? We investigated whether real-world object categories that spontaneously emerge in the first months of life match categorical representations of objects in the human visual cortex. Using eye tracking, we measured the differential looking time of 4-, 10-, and 19-mo-olds as they looked at pairs of pictures belonging to eight animate or inanimate categories (human/nonhuman, faces/bodies, real-world size big/small, natural/artificial). Taking infants' looking times as a measure of similarity, for each age group, we defined a representational space where each object was defined in relation to others of the same or of a different category. This space was compared with hypothesis-based and functional MRI-based models of visual object categorization in the adults' visual cortex. Analyses across different age groups showed that, as infants grow older, their looking behavior matches neural representations in ever-larger portions of the adult visual cortex, suggesting progressive recruitment and integration of more and more feature spaces distributed over the visual cortex. Moreover, the results characterize infants' visual categorization as an incremental process with two milestones. Between 4 and 10 mo, visual exploration guided by saliency gives way to an organization according to the animate-inanimate distinction. Between 10 and 19 mo, a category spurt leads toward a mature organization. We propose that these changes underlie the coupling between seeing and thinking in the developing mind.


Assuntos
Cognição/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Fatores Etários , Mapeamento Encefálico/métodos , Tecnologia de Rastreamento Ocular , Feminino , Fixação Ocular/fisiologia , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa , Pensamento/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
14.
PLoS One ; 17(2): e0263216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167582

RESUMO

Vision is considered a privileged sensory channel for deaf and hard of hearing (DHH) students to learn, and, naturally, they recognize themselves as visual learners. This assumption also seems widespread among schoolteachers, which led us to analyse the intersection between teachers' beliefs on deaf and hard of hearing students' academic achievement, visual skills, attentional difficulties, and the perceived importance of image display in class. An online survey was designed to analyse the beliefs of the schoolteachers about the deaf and hard of hearing students learning in educational settings from Portugal and Sweden. Participated 133 teachers, 70 Portuguese and 63 Swedish, from the preschool to the end of mandatory education (ages 3-18) with several years of experience. The content analysis and the computed SPSS statistical significance tests reveal that surveyed teachers believe that deaf and hard of hearing students have better visual skills when compared with their hearing peers yet show divergent beliefs about visual attentional processes. Within the teachers' perceptions on learning barriers to DHH students, the distractibility and cognitive effort factors were highlighted, among communicational difficulties in class. Conclusions about the prevalence of learning misconceptions in teachers from both countries analysed, corroborate previous studies on neuromyths in education, and bring novelty to Deaf Education field. The work of translation of scientific knowledge, teacher training updating, and partnership between researchers and educators are also urgently needed in special education.


Assuntos
Educação de Pessoas com Deficiência Auditiva/métodos , Pessoas com Deficiência Auditiva/psicologia , Professores Escolares/psicologia , Visão Ocular/fisiologia , Adulto , Cultura , Humanos , Pessoa de Meia-Idade , Portugal/epidemiologia , Prevalência , Inquéritos e Questionários , Suécia/epidemiologia , Adulto Jovem
15.
PLoS One ; 17(2): e0262098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213558

RESUMO

Longstanding cross-linguistic work on event representations in spoken languages have argued for a robust mapping between an event's underlying representation and its syntactic encoding, such that-for example-the agent of an event is most frequently mapped to subject position. In the same vein, sign languages have long been claimed to construct signs that visually represent their meaning, i.e., signs that are iconic. Experimental research on linguistic parameters such as plurality and aspect has recently shown some of them to be visually universal in sign, i.e. recognized by non-signers as well as signers, and have identified specific visual cues that achieve this mapping. However, little is known about what makes action representations in sign language iconic, or whether and how the mapping of underlying event representations to syntactic encoding is visually apparent in the form of a verb sign. To this end, we asked what visual cues non-signers may use in evaluating transitivity (i.e., the number of entities involved in an action). To do this, we correlated non-signer judgments about transitivity of verb signs from American Sign Language (ASL) with phonological characteristics of these signs. We found that non-signers did not accurately guess the transitivity of the signs, but that non-signer transitivity judgments can nevertheless be predicted from the signs' visual characteristics. Further, non-signers cue in on just those features that code event representations across sign languages, despite interpreting them differently. This suggests the existence of visual biases that underlie detection of linguistic categories, such as transitivity, which may uncouple from underlying conceptual representations over time in mature sign languages due to lexicalization processes.


Assuntos
Surdez/prevenção & controle , Linguística/tendências , Língua de Sinais , Visão Ocular/fisiologia , Surdez/fisiopatologia , Feminino , Dedos/fisiologia , Mãos/fisiologia , Humanos , Julgamento , Masculino , Polegar/fisiologia
16.
Sci Rep ; 12(1): 1390, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082319

RESUMO

Pupillometry has become a standard measure for assessing arousal state. However, environmental factors such as luminance, a primary dictator of pupillary responses, often vary across studies. To what degree does luminance interact with arousal-driven pupillary changes? Here, we parametrically assessed luminance-driven pupillary responses across a wide-range of luminances, while concurrently manipulating cognitive arousal using auditory math problems of varying difficulty. At the group-level, our results revealed that the modulatory effect of cognitive arousal on pupil size interacts multiplicatively with luminance, with the largest effects occurring at low and mid-luminances. However, at the level of individuals, there were qualitatively distinct individual differences in the modulatory effect of cognitive arousal on luminance-driven pupillary responses. Our findings suggest that pupillometry as a measure for assessing arousal requires more careful consideration: there are ranges of luminance levels that are more ideal in observing pupillary differences between arousal conditions than others.


Assuntos
Nível de Alerta/fisiologia , Nível de Alerta/efeitos da radiação , Luz , Pupila/fisiologia , Pupila/efeitos da radiação , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação , Estimulação Acústica , Adolescente , Adulto , Cognição/fisiologia , Cognição/efeitos da radiação , Feminino , Fixação Ocular/fisiologia , Fixação Ocular/efeitos da radiação , Frequência Cardíaca/fisiologia , Frequência Cardíaca/efeitos da radiação , Humanos , Masculino , Estimulação Luminosa , Tempo de Tela , Adulto Jovem
17.
PLoS Comput Biol ; 18(1): e1009771, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007281

RESUMO

Visual performance varies around the visual field. It is best near the fovea compared to the periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the lower, and poorest on the upper meridian. The fovea-to-periphery performance decline is linked to the decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical magnification factor (CMF) as eccentricity increases. The origins of polar angle asymmetries are not well understood. Optical quality and cone density vary across the retina, but recent computational modeling has shown that these factors can only account for a small percentage of behavior. Here, we investigate how visual processing beyond the cone photon absorptions contributes to polar angle asymmetries in performance. First, we quantify the extent of asymmetries in cone density, midget RGC density, and V1 CMF. We find that both polar angle asymmetries and eccentricity gradients increase from cones to mRGCs, and from mRGCs to cortex. Second, we extend our previously published computational observer model to quantify the contribution of phototransduction by the cones and spatial filtering by mRGCs to behavioral asymmetries. Starting with photons emitted by a visual display, the model simulates the effect of human optics, cone isomerizations, phototransduction, and mRGC spatial filtering. The model performs a forced choice orientation discrimination task on mRGC responses using a linear support vector machine classifier. The model shows that asymmetries in a decision maker's performance across polar angle are greater when assessing the photocurrents than when assessing isomerizations and are greater still when assessing mRGC signals. Nonetheless, the polar angle asymmetries of the mRGC outputs are still considerably smaller than those observed from human performance. We conclude that cone isomerizations, phototransduction, and the spatial filtering properties of mRGCs contribute to polar angle performance differences, but that a full account of these differences will entail additional contribution from cortical representations.


Assuntos
Retina/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Biologia Computacional , Humanos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Máquina de Vetores de Suporte , Adulto Jovem
18.
PLoS One ; 17(1): e0262763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051230

RESUMO

The mouse has dichromatic color vision based on two different types of opsins: short (S)- and middle (M)-wavelength-sensitive opsins with peak sensitivity to ultraviolet (UV; 360 nm) and green light (508 nm), respectively. In the mouse retina, cone photoreceptors that predominantly express the S-opsin are more sensitive to contrasts and denser towards the ventral retina, preferentially sampling the upper part of the visual field. In contrast, the expression of the M-opsin gradually increases towards the dorsal retina that encodes the lower visual field. Such a distinctive retinal organization is assumed to arise from a selective pressure in evolution to efficiently encode the natural scenes. However, natural image statistics of UV light remain largely unexplored. Here we developed a multi-spectral camera to acquire high-quality UV and green images of the same natural scenes, and examined the optimality of the mouse retina to the image statistics. We found that the local contrast and the spatial correlation were both higher in UV than in green for images above the horizon, but lower in UV than in green for those below the horizon. This suggests that the dorsoventral functional division of the mouse retina is not optimal for maximizing the bandwidth of information transmission. Factors besides the coding efficiency, such as visual behavioral requirements, will thus need to be considered to fully explain the characteristic organization of the mouse retina.


Assuntos
Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular/fisiologia , Animais , Opsinas dos Cones/metabolismo , Camundongos , Estimulação Luminosa , Opsinas de Bastonetes/metabolismo
19.
Elife ; 112022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037622

RESUMO

We developed an image-computable observer model of the initial visual encoding that operates on natural image input, based on the framework of Bayesian image reconstruction from the excitations of the retinal cone mosaic. Our model extends previous work on ideal observer analysis and evaluation of performance beyond psychophysical discrimination, takes into account the statistical regularities of the visual environment, and provides a unifying framework for answering a wide range of questions regarding the visual front end. Using the error in the reconstructions as a metric, we analyzed variations of the number of different photoreceptor types on human retina as an optimal design problem. In addition, the reconstructions allow both visualization and quantification of information loss due to physiological optics and cone mosaic sampling, and how these vary with eccentricity. Furthermore, in simulations of color deficiencies and interferometric experiments, we found that the reconstructed images provide a reasonable proxy for modeling subjects' percepts. Lastly, we used the reconstruction-based observer for the analysis of psychophysical threshold, and found notable interactions between spatial frequency and chromatic direction in the resulting spatial contrast sensitivity function. Our method is widely applicable to experiments and applications in which the initial visual encoding plays an important role.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Teorema de Bayes , Percepção de Cores/fisiologia , Sensibilidades de Contraste , Humanos , Estimulação Luminosa , Software
20.
Nat Commun ; 13(1): 374, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042858

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.


Assuntos
Canais de Cloreto/genética , Degeneração Macular/genética , Proteínas Mitocondriais/genética , Mutação/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Morte Celular , Canais de Cloreto/deficiência , Modelos Animais de Doenças , Fundo de Olho , Homeostase , Metabolismo dos Lipídeos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Especificidade de Órgãos/genética , Drusas Retinianas/complicações , Drusas Retinianas/diagnóstico por imagem , Drusas Retinianas/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Fatores de Risco , Transcrição Gênica , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...